Positron range in PET imaging: an alternative approach for assessing and correcting the blurring.
نویسندگان
چکیده
Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Furthermore, the percentage of annihilation events within a given distance from the point of positron emission is relevant for assessing statistical noise. This paper aims to determine the positron range distribution relevant for blurring for seven medically relevant PET isotopes, (18)F, (11)C, (13)N, (15)O, (68)Ga, (62)Cu and (82)Rb, and derive empirical formulas for the distributions. This paper focuses on allowed-decay isotopes. It is argued that blurring at the detection level should not be described by the positron range r, but instead the 2D projected distance δ (equal to the closest distance between decay and line of response). To determine these 2D distributions, results from a dedicated positron track-structure Monte Carlo code, Electron and POsitron TRANsport (EPOTRAN), were used. Materials other than water were studied with PENELOPE. The radial cumulative probability distribution G(2D)(δ) and the radial probability density distribution g(2D)(δ) were determined. G(2D)(δ) could be approximated by the empirical function 1 - exp(-Aδ(2) - Bδ), where A = 0.0266 (E(mean))(-1.716) and B = 0.1119 (E(mean))(-1.934), with E(mean) being the mean positron energy in MeV and δ in mm. The radial density distribution g(2D)(δ) could be approximated by differentiation of G(2D)(δ). Distributions in other media were very similar to water. The positron range is important for improved resolution in PET imaging. Relevant distributions for the positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas.
منابع مشابه
The effect of fasting on Positron Emission Tomography (PET) imaging
As a nuclear approach, Positron Emission Tomography (PET) is a functional imaging technique which is based on the detection of gamma ray pairs emitted by a positron-emitting radionuclide. There are certain limitations to this technique such as normal tissue uptake. Therefore, it has been recommended that patients prepare before scanning. Fasting for a short while before PET imaging is an exampl...
متن کاملCalculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET) Imaging Using GEANT4 Toolkit
Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET). In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEA...
متن کاملReducing the respiratory motion artifacts in PET cardiology: A simulation study
Introduction: There are several technical features that make PET an ideal device for the noninvasive evaluation of cardiac physiology. Organ motion due to respiration is a major challenge in diagnostic imaging, especially in cardiac PET imaging. These motions reduce image quality by spreading the radiotracer activity over an increased volume, distorting apparent les...
متن کاملEffect of scatter coincidences, partial volume, positron range and non-colinearity on the quantification of FDOPA Patlak analysis
Introduction: The key characteristics of positron emission tomography (PET) are its quantitative capability and its sensitivity, which allow the in vivo imaging of biochemical interactions with small amounts of tracer concentrations. Therefore, accurate quantification is important. However, it can be sensitive to several physical factors. The aim of this investigation is the assessment of the e...
متن کاملDiagnostic Accuracy of Positron Emission Mammography with 18F-fluorodeoxyglucose in Breast Cancer Tumor of Less than 20 mm in Size
Objective(s): To investigate the diagnostic accuracy of positron emission mammography (PEM) and positron emission tomography/computed tomography (PET/CT) for small breast tumors of less than 20 mm in size.Methods: The study was conducted on a total of 100 subjects (i.e., 50 patients with pathologically proven breast cancer and 50 normal cases of medical screening). The total number of tumors wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 57 12 شماره
صفحات -
تاریخ انتشار 2012